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Abstract  

This paper addresses a new method of generalized genarating sequences (GGS) in reliability-cost 
optimization problem. The GGS is an extension based on some modifications of the standard universal 
genarating function (UGF). This method is convenient for computerized calculation of enumeration 
combinatorial problems thst arise in discrete optimization problem as encountred in parallel-series 
power systems. This method will be convenient to the complex combinatorial optimization problem as 
described  below in the context of optimal redundancy-investment allocation problems (PRIOP). The 
GGS is used in bi-objective optimization functions PRIOP.  
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1 INTRODUCTION AND PRELIMINARIES 

Many complex problems need a fast method to be solved in short time, all the reliability 
combinatorial problems based on the classical reliability methods are the cases. Solution of 
various problems of discrete optimization leads to complex enumerating states procedures. 
The method of generalized generating sequences (GGS) was developed on computer based 
solution of such problems as in [1] and [2]. The method was used for solution of optimal 
redundancy problems in [3] and [4], for multi-state systems analysis as discussed in [5] and 
[6] and for power system reliability analysis in [7]. A comparison between this new method 
used and standard universal generating function for a complex system will be implemented. 

The rest of this paper is outlined as follows: We start in Section 2 with the general polynomial 
form of generalized generating sequence. Next, a description of availability estimation based 
on UGF modified to GGS for redundancy-investment optimization problem  in Section 3. A 
GGS algorithm is presented in section 4. In Section 5, we present the illustrative example. 
Conclusion is drawn in Section 6. 

2 GENERAL POLYNOMIAL FORM OF GENERALISED GENERATING 
SEQUENCE 

For the sake of clarity, we begin with a polynomial representation of the GGS, i.e. the GGS 
method will be first described in terms of common generating function used in combinatorial 
analysis problem. Let us begin with a simple example. 

Example1. Consider a series system consisting of two units (Fig. 1). Remind that in reliability 
theory a system is called series if a failure of at least one unit leads to the system failure.
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Let the first unit be characterized by the probability of successful operation r1 = 0.9 and cost 
c1 = 1, where as the second unit has, respectively, r2 = 0.8 and c2 = 3 and rn = 0.88 and cn = 2. 
Reliability of each unit can be improved by the use of hot redundancy (Fig. 2), which means 
that all units of the redundant group are in the same operation condition [8]. The values of 
reliability index of a redundant group of n units, R(n), are calculated as: 

( ) ( ) 111 +−−= n
kk rnR          (1) 

Corresponding result are presented in the following Table I. 

For each unit, let us write a two-dimensional generation function of the form 
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where Rk(n) denotes reliability index of unit k with x spares; the power of xk  means how 
many spare units of type k are used; the power of y shows how much is spent for spares. 

 

Figure 2:  Multiple parallel-series units system with redundancy 

Table I: Different reliability values for power units system 

Redundant 

Elements n 

R1(n) R2(n) R3(n) 

 

1 

2 

3 

4 

. 

.... 

 

0.990 

0.999 

0.999 

0.999 

. 

... 

 

0.960 

0.992 

0.998 

0.999 

. 

... 

 
0.985 
0.998 
0.999 
0.999 

. 
... 

 

Figure 1:  Series power units system  
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Substituting the input data from above, we get 
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First stage . We characterize the system by the product of these two polynomials with 
ordering by increasing power of y, secondly by order of x1, and then by x2. 
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Second stage. We characterize the system by the product of these two polynomials with 
ordering by increasing power of y, secondly by order of x1, and then by x2. 
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Let us notice that the new polynomial is now with three-dimensional only for two components 
because it is tracking both x1 and x2. How can one `read' the polynomial ψ(y, x1, x2)? 

The coefficients of polynomial represent the reliability of redundancy variants for the 
considered system. The power of x1 and x2 means the number of redundant units of the first 
(second) type, and the power of y means the total spare units cost (in some units). Notice that 
the absence of x1 and x2 in some terms means that the power equals zero, i.e. there is no 
redundant unit of this type. We remember that we need to find the so-called nominated 
sequence, i.e., a sequence of the spare unit allocation that is characterized by monotone 
increase of system reliability index with growth of the total system cost. 
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Third stage.  We characterize the global system by the product of these two polynomials ψ(y, 
x1, x2 ) and ψ(y, x3) , with ordering by increasing power of y, secondly by order of x1, x2 and 
then by x3. Let us notice that the new polynomial is four-dimensional only for three 
components because it is tracking both x1 , x2  and x3. How can one `read' the polynomial 
ψ(y, x1, x2) and ψ(y, x3)? As cited above, the general polynomial function is: 
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The general procedure of GGS for N component are: 
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The usage of generating function allows us to construct a sequence of solutions (as a kind of 
Pareto set) exhibiting some attributes of the optimal solution (the numbers of spares which 
corresponds to each particular pair or impair (reliability- cost). 

3 AVAILABILITY ESTIMATION BASED ON UGF MODIFIED TO GGS METHOD 
FOR PRIOP 

This procedure, with the use of a standard generating function UGF is appropriate for the case 
presented above, as soon as `transformations' over various parameters are such as products 
(for probabilities) and summations (for costs) as in [9]. However, similar enumerating 
problems are not restricted by these operations over parameters. Let us now suggest a more 
`computerized' presentation of the procedure keeping further generalization of the method in 
mind. To make the presentation free from any customary terminology, to avoid any confusion 
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and to make it more mnemonic, let us turn to the terminology used in ancient Algerian power 
industry as (power transformer industry). The largest mechanics and electric units was called 
a legion. Each legion comprised cohorts. A cohort comprised several different maniples - 
`Coiling, Magnetic circuit ect..' Industry sections units that differ from all others. Cohorts 
might be identical, i.e. consisting of the same type and the same number of maniples. (In the 
current context cohorts are identical.). Legions might differ by the number of cohorts. (This 
presentation is similar to the all evolutionary program ring language (object oriented). 

By using this terminology, the parameters in our optimization problem are: (reliability 
indices. cost, the number of redundant units, types or version of the units etc.) can be called 
maniples. So, in our case, we have three types of maniples: 

 

1- Number of redundant units (x). 
2- Reliability index  (R). 
3- Cost of unit (c). 

 

A cohort, C, consists of the maniples mentioned above for some particular x and 
corresponding R and c. So the jth cohort is: 

jjjj xcRC ,,=           (4) 
 

A legion is formed by a set of cohorts. Since we will use several different legions, it is 
reasonable to supply each cohort with its ‘identification legion’. For instance, if cohort j 
belongs to legion k, we will denote this as: 
 

kjkjkjkj xcRC ,,=           (5) 
 

However, thus legion k consists of the following cohorts as: 
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Let us consider now two different legions, the first legion is denoted by L1 of N1 cohorts and 
the second by L2  of N2  cohorts. Let us determine that `Interaction' of two different legions 
leads interaction of all possible pairs of cohorts C1j with j=1, 2, . . . , N1, and C1s with  s=1, 2, 
. . . , N2. The procedure of the cohort interaction will be denoted by ` δ '. In other words, we 
will have N1 * N2 pairs of interacting cohorts, expressed by: 
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Interaction of a pair of cohorts leads to maniple `interaction'.  We remark that each maniple of 
the first cohort interacts with the same type of maniple of the second cohort, i.e. R with R, c 
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with c, and x with x. Maniples of each type interacts in their own way. For our case, the 
interaction of maniples of type R is denoted by : 
 

•  δR  

maniples of type c by: 

• δc  

 and maniples of type x by: 

• δx.  
 

The interactions for these particular types of maniples conduct to the following expressions: 
 

kjkRjNewManiple RRRRR 2121,  * == δ        (8) 
 

kjkcjNewManiple ccRcc 2121,  +== δ        (9) 
 

kjkxjNewManiple xRxX 2121,  x, == δ        (10) 
 

In this particular case, as the result of two cohort interaction, we obtain a new cohort with 
new maniples. Each maniple presents the same resulting parameters as in the polynomial 

( )21,, xxyΣψ  shown above. However, if maniple interaction differs from these three types 
mentioned above, pure polynomial presentation with consequent multiplications fails. A 
simple example will be considered later. 
 

Interaction of two legions produces cohorts which can be undominated or dominated in the 
sense mentioned before. A domination of cohort C1 over cohort C2 will be denoted by 

21 CC f . The procedure of building a sequence of undominated cohorts can be described as 
the following algorithm: 

4 THE GENERALIZED GENERATING SEQUENCE GGS ALGORITHM 
 

STEP.1   

Initialisation  

STEP.2   

For j=1 to N  

            After iteration of cohort, say 

            C11 and C21  we obtain the First resulting cohort , say 

          *C1 Save the first cohort 

STEP.3    

Repeat  

            Then after iteration of cohort, say 
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            C12 and C21  we obtain the second resulting cohort , say 

          *C2  Save the second cohort 

Testing (Between Cohorts) If 

cohorts , say 

                    ** CC 21 f  

Then 

              *C2 , is sent to trash 

cohorts , say 

            ** CC 12 f  

              *C2 , is saved and  

              *C1 , is sent to trash 

Then If neither  

           **** CC,nor,CC 2112 ff both of them are: 

cohorts  undominated 

             ** C,C 12 , are saved 

STEP.3    

Repeat  The procedure ( For STEP.1  TO  STEP.2 )   

 

STEP.4    

Procedure Filtration  

          

        The new cohort appear and excluding several cohorts    ( previously saved ). 

STEP.5    

cohorts , say 

         

     (a) dominated new cohort. 

 (b) undominated new cohort . 

 (c) undominated and dominates new cohort are over two previous cohorts. 

cohorts , say 

     Save, the final legion obtained as the result of interaction of all legions ( after N-1 pair 
interaction of legions) after the final `filtering' contains the entire undominated sequence (at 
least in the predetermined range). 

          End 
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We described interaction of two legions above. It is possible to arrange a simultaneous 
interaction of several legions. The principal idea remains the same. In this case we have three 
expressions: 
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The problem considered is an bi-objective optimization which in is to construct undominated 
sequence of the system configurations (trade-off  ` Reliability-Cost '). This allows engineering 
designer to choose the best solution for required reliability or admissible system cost. 

In this case interaction of maniples ġ is defined as: 
 

1

21

21
21

11

11
1

−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+
=

gg

g/g/
ggg gNew,Maniple

&&

&&
&&& &δ

      (14) 

 

For any mixed configuration as series-parallel one. Notice that interaction of legions for 
parallel and series structures are different. Let us introduce new notation: π is an interaction 
symbol for legions interacting in series structure, and σ is an interaction symbol for parallel 
structure. Form reliability index interactions of maniples can be written by the following 
expressions: 

2121 *RRRR =π           (15) 

and 

2121 1*11 RRRR R −−−=σ          (16) 
 

Concerning cost in this case, is given by the following expression: 

212121 cccccc cc +== πσ         (17) 

 

So, the entire system final legion can be written in the following form: 
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32 LLLL πσ=∑           (18) 

5 ILLUSTRATIVE EXAMPLE 

Now let us consider several simple examples where GGS is really effective for enumerating 
process and standard generating function UGF does not work at all [10]. Let consider a  
system containing n subsystems Ci (i = 1, 2, …, N) in series arrangement as represented in 
figure 3.  

 

 

 

 

 

Each unit has exponential distribution of time to failure. Each unit is characterized by mean 
time between failures (MTBF), the maniple ġ, and cost, c. There are several vendors who 
might be potential suppliers, each of which can deliver unit of each type with different values 
of  parameters ġ and c  given in the following Table II from Figure.4.  

 

 

 

 

 

 

 

Figure 4:  REDUNDANT STRUCTURE 

 

Table II: Different values of paramaters 
 

ġ1 C1 ġ2 C2 ġ3 C3 

1.00 

2.00 

3.00 

1.00 

3.00 

4.00 

1.00 

3.00 

0.00 

1.50 

2.50 

0.00 

1.50 

3.00 

0.00 

1.00 

1.50 

0.00 

 

R1 C1 R2 C2 R3 C3 

0.90 

0.95 

0.98 

1.0 

1.5 

2.0 

0.70 

0.72 

0.00 

1.00 

1.50 

0.0 

0.55 

0.70 

0.00 

2.00 

2.50 

0.00 
 

 

 Figure 3:  SERIES STRUCTURE 
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It is clear that each ġ1, C1, ġ2, C2, and ġ3, C3  : represents the corresponding legions. As shown 
the interaction of maniples ġ is : 
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and interaction of maniples remains the same. Interaction of legions 1 and 2 gives: 
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We omitted intermediate steps in the procedure, preferring to give the final results in the 
following table Table III. 
 

Table III.  Results of interaction between legions 1&2 new legions 
 

Interacted Cohorts [New Cohorts] 

C11, C21 C11, C22 C12, C21 C12, C22 C13, C121 C13, C22 

M
aniple 

New *
1C  New *

2C  New *
3C  New *

4C  New *
5C  New *

6C  

ġ 

c 

0.50 

2.50 

0.75 

3.50 

0.66 

4.50 

1.20 

5.50 

0.75 

5.50 

1.50 

6.50 

  

From the result (Table III), one can see that the new maniple *
2C dominates over *

4
*
3 , CC  and *

5C . 
So, the resulting legion actually appear and contains only *

4
*
2

*
1 ,, CCC  and *

6C  . 

The final legion after filtering is found in a similar way as shown in Table IV. 
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Table IV: Results after filtering with dominated cohorts 

 

  

 

 

 

 

The undominated cohorts are **
6

**
5

**
4

**
3

**
2 ,,, CCCCC and **

8C  . Only cohort **
7C  is dominated. Table IV 

allows one to choose the best variant of the system configuration. Now let us perform simple 
computations. Results of type π interaction of legions 2 and 3 are presented in Table VI. From 
this table one can see that cohort *

3C  is dominated by cohort *
2C . 

Table V Results of type π between legions 
Interacted Cohorts [New Cohorts] 

C21, C31 C21, C32 C22, C31 C22, C32 

M
aniple 

New *
1C  New *

2C  New *
3C  New *

4C  

R 

c 

0.895 

3.000 

0.910 

3.500 

0.902 

3.500 

0.916 

4.000 

  

Table VI Results of type σ between legions 
Interacted Cohorts [New Cohorts] 

*
1C , C11 *

1C , C12 *
1C , C13 *

2C , C11 

M
aniple 

New **
1C  New **

2C   New **
3C  New **

4C  

R 

c 

0.806 

4.000 

0.850 

4.500 

0.877 

5.000 

0.819 

4.500 

*
2C , C12 *

2C , C13 *
4C , C12 *

4C , C13 M
aniple New **

5C  New **
6C  New **

7C  New **
8C  

R 

c 

0.865 

5.000 

0.892 

5.500 

0.824 

5.000 

0.970 

5.000 

  
Interacted Cohorts [New Cohorts] 

*
2C , C31 *

2C , C32 *
4C , C31 *

4C , C32 *
6C , C31 *

6C , C32 

M
aniple New 

**
3C  

New 
**

4C  

New 
**

5C  

New 
**

6C  

New 
**

7C  

New 
**

8C  

ġ 

c 

0.50 

4.50 

0.60 

5.00 

0.66 

6.50 

0.87 

7.00 

0.75 

7.50 

1.00 

8.00 

  

Table VI represent the result of interaction of type σ and the new legion appear after 
exclusion of cohort with legion one. It’s easy to find the final legion after following the 
filtration given by the program in Java (see algorithm) the final legions include five legion 
with minimal cost and high availabilities. 

Interacted Cohorts [New Cohorts] 

*
2C , C31 *

2C , C32 *
4C , C31 *

4C , C32 *
6C , C31 *

6C , C32 

M
aniple New 

**
3C  

New 
**

4C  

New 
**

5C  

New 
**

6C  

New 
**

7C  

New 
**

8C  

ġ 

c 

0.50 

4.50 

0.60 

5.00 

0.66 

6.50 

0.87 

7.00 

0.75 

7.50 

1.00 

8.00 



                                M. Amara et al / Journal of Cybernetics and Informatics  9  (2010)        75-86                                    86 

6 CONCLUSION 

In this work the generalized generating sequence (GGS) method was applied for solving some 
practical enumerating industry problems dealing with conditional bi-objective optimization. 

A new enumerating algorithm is suggested. This algorithm is convenient for a large industry 
programs implementation.  
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